RAYLEIGH STABILITY OF SHEAR FLOW IN
RELAXING MEDIA

V. E. Nakoryakov, V. V. Sobolev, UDC 532.51
and O. Yu. Tsvelodub

The stability of steady-state flow is considered in a medium with a nonlocal coupling between
pressure and density. The equations for perturbations in such a medium are derived in the
linear approximation. The results of numerical integration are given for shear motion. The
stability of parallel layered flow in an inviscid homogeneous fluid has been studied for a hun-
dred years, The mathematics for investigating an inviscid instability has been developed, and
it has been given a physical interpretation. The first important results in flow stability of an
incompressible fluid were obtained in the papers of Helmholtz, Rayleigh, and Kelvin [1] in the
last century. Heisenberg [2] worked on this problem in the 1920's, and a series of interesting
papers by Tollmien [3] appeared subsequently. Apparently one of the first problems in the
stability of a compressible fluid was solved by Landau [4], The first investigations on the
houndary-layer stability of an ideal gas were carried out by Lees and Lin {5], and Dunn and
Lin [6]. Mention should be made of a series of papers which have appeared quite recently
{7-9]. In all the papers mentioned flow stability is investigated in the framework of clas~
sical single-phase hydrodynamics. Meanwhile, in recent years, the processes by which per-
turbations propagate in media with relaxation have been intensively studied [10-12].

1. Fundamental Equations

We consider the problem of the stability of relatively small perturbations in the steady-state flow of a
fluid with the following equation of state:

8p = 300 + Bddp/de + ud2dp/dt?, (1.1)

where 6p and 6p are small perturbations of pressure and density. We shall neglect the effect of viscosity
not caused by internal processes.

Let the unperturbed flow be defined by the relations

po=const, div V=0, V_=V(y).
We shall assume that the flow parameters oscillate about these quantities

vo=Vy) + uz, y, 2, t);
vy:’B(x, Y, 3, t);
v;:W(J:, ¥, 3, b); 1.2)

p=po = plz, y. 2, 1);

p=po + 0lz, ¥, z. 1),

where the sign ~ refers to the smallfluctuating quantities. Writing the Euler equation for Egs, (1.2) and neglect~

ing quantities of the second order of smallness in the perturbations and their derivatives we obtain the follow~
ing system of partial differential equations:
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duldt + Vou/dz + TV’ =— (1/py)dpiox;
0vlat — Vavioz=— (1/po)op/dy;
aW/6t <+ Vo iox=— (1/po)dpioz; (1.3)
dpldt + Voploz + py(0uidr + dvidy + aW/az=0,

where the prime denotes differentiation with respect to y. The equation of state (1,1) is rewritten in the
form

~ L g~

P=cip+Blip 01+ Vap/dr) + »16%/0t® + 2Va%piaton + V26%p | d2). (1.4)

The system (1.3), (1.4) has solutions which are exponential functions of the variables x, z, t. We shall look
for these solutions in the form

\ ( )]

u u(y)

v v(y)

W1 =W (y|expliz(z —ct) + iyal. 1.5
ls? o (y) '

P otrw |

In what follows we shall restrict ourselves to investigating perturbations which are periodic in the spa-
tial coordinates x and z. Consequently, in this case @ and vy in Eq. (1.5) must be real, and ¢ can be complex,

c=¢, + ic;. (1.6)
If acj in Eq. (1.6) is greater than zero, then the perturbations Eqs. (1.5) increase with time. If ac; is
less than zero, the perturbations are damped.
Substituting Eq. (1.5) in Egs. (1.3), (1.4), we obtain a system of ordinary differential equations in y,
iV — c)u + vV'= ~Ga Jpo)p; iV — cyr=— (1'pe)p’";
ia(V—c)W — —(iv/pg)p;
(iipg) (V — ¢)p + imu -+ v + iyW =0; .7
p = cip + iaf (V — ¢) p — %a® (V — c)p.

Let Vynax by the characteristic velocity of the unperturbed flow, and h its characteristic dimension. We
introduce the dimensionless quantities

“_) = .O/po' I_) = p/f)ovrzlaxv -‘7 = V/Vm{lxv ;’ - "./Vmax‘
Co=00Vmax =1/M, z-=2/h, y=y'h, z=-3'h,
Tk, a=ah, D=0 Vinae. We W1V ma, (1.8)
E: B/ V nax, N
where M is the Mach number.
Using Eq. (1.8) we rewrite Eq. (1.7) omitting the bar above the dimensionless quantities:
iV — cju - vV'=— iap,
ia(V — cJv=— p’,
iV — e)W=— iyp. (1.9
ia(V — c)p -+ iou + v + iyW=0,
p=(1/M31 + @MV — ¢) — «a?M¥(V — ¢)*]o .
Thus, the problem of the stability of steady-state flow reduces to finding the eigenvalues of ¢ for the sys-
tem (1.9) which satisfy the specific boundary conditions of the perturbation. It can be shown that the stability
problem of three-dimensional perturbations is equivalent to the stability problem of two-dimensional pertur-

bations with a smaller Mach number and a larger parameter 3. Thus, we can restrict the treatment to two-
dimensional perturbations.
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2. Derivation of the Equations for Two-Dimensional

Velocity and Pressure Perturbations

We now set W=0 and y =0 in the system (1.9). The quantities p and p are eliminated from the first two
equations of system (1.9) by using the last two equations,

14— iafM2(T"—¢) — uz?M2 (I —¢)? |

ian(V—c)u-+ovV’ = (icu +v') Yy p— ; (2.1
(V= 0 = [ S N Gy, @.2)

We now use Eq. (2.1) to express u in terms of v:
i = |45 iaﬂ.“z“;\i:(cv)'::)aﬂMﬂ(V —L v _UV,} (I —cArEd —Bia(z:z(zﬁ\l G—a—1{" (2.3)

Substituting Eq. (2.3) in Eq. (2.2), we obtain
| v — VIV — OMA2 4 1MV — e))/A] - pl— o2 — VAV — ¢ )+
+ @MV — )AL + @MV — ) — wa®MP(V — ¢)?) + V2 M2 (2 + iaBM2(V — c))/A] = 0,
A=[1 + iafMAV — ¢) — 2a®™MHV — ¢)?] - IMNV — (1 + %a?) — iapMHV —¢) — 1]. (2.4)

If M=0, then Eq. (2.4) passes to Rayleigh's equation, defining the stability of parallel flows of an in-
viscid incompressible fluid.

If f=n=0, M=0, then Eq. (2.4) coincides with formula (5.3.20) in [13] if we set T =1 in the latter.
We return once again to the system (1.9). We express v, u, and p in terms of p:
p={M*1 = MV — ) — oMV — o)1} p;

v==[i"a(V — o)Ip’; (2.5)
u=—/(V —o)p — (Via¥V — ¢} 1p".

Substituting Eq. (2.5} in the fourth equation of system(1.9), we obtain the equation for p:
p— R2VIV — o)lp’ — a?pf{l — MYV — c)*[1 +-
4+ afM(V — o) — ua®™MYV — ¢)?]}=0. (2.6)

If B=%=0, then Eq. {(2.6) coincides with the equation for p in the case of a compressible fluid (see, for
example, [8]). For flows which are bounded by hard walls, Egs, (2.4)~-(2.8) are solved with the boundary con~
ditions

Vly=t1=0; dp/dyl,—i=9,
where [ is the y coordinate of the wall,

For free flows, allowing for the fact that V'=0 at infinity, the following boundary conditions can be ob-
tained from Egs. (2.4), (2.6) for perturbations which increase with time:

Vy=re=0, ply—ze =0. 2.7
If =0 and
LaMu'? > |V{oo) — ¢ > 1/M(1 + na®yt2,
then perturbations which are neutral in time do not vanish at infinity and Eq. (2.7) is not satisfied, In this

case the boundary conditions reduce to the requirement that the perturbations at infinity should depart,

3. Investigations of Shear Flow Stability

The stability problem was solved numerically for the basic flow profile
V(y)=thy. 3.1)

Eigenvalues ¢ were sought for Mach numbers less than unity. In order not to encounter the difficulties arising
when ¢; =0, Egs. (2.4) and (2.6) were solved only with those values of & for which c¢; was still nonzero for the
given Mach number,
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TABLE 1

M 0 0,2 0.% 0,8
[ €
0,05 0914664 0,880269 0.792673 0,547393 :
0.1 0.836440  0,805063 0,723345  0,480603
0,45 0.764315 0,735587  0,659242  0,419158
0,2 0,697455  0,671047  0,599557  0,362049
0.3 0.576895  0,554264 0.491015  0,257844
0,4 0.470451  0.450676  0.393933  0.164127
0,5 0.375022  0,357401 . 0.305719  0,078692
0,52 0,062465
0,54 0,046496
0,56 0.030772
0.6 0.28832%  0.,272315  (0.224518
0,7 0,208643  0,193847  0.148956
0,75 0.112951
0,8 0134669  0.120758 0.077983
© 085 0.099496  0,085228  0.043935
0,9 0,065387  0,052105
0,95  0.032250 . 0,019202
TABLE 2
g
| M=0,4 | M=0,8
o I ¥=0,1 ‘ %=0,2 I ®=0,1 w=0,2
0,1 0.723341 0.723337  (L480358 0.430508
0.2 0.599535  0.599513 . 0,361682  0,361356 -
0.3 0.490963  0.49 0.256814  0.233778
0.4 0.393843  0.393 0.161882  0,159578
0.5 0.305589 0 0.074781  0.070655
0.52 0, 0.038198  0.033676
0.54 0.041877  0.036960
0.56 0.025808  0.120508
0.6 0.224349  0.224179 0,
0.7 0.148748  0.1485338
075  0.112724  0.112495
0.8 0077737  0.077483
0,85  0,043691  (.043423
TABLE 3
4
| M=0,2 M=0,8
o | oB=t | p=10 | p=t p=10
0,4 0.805315%2 0,805990  0.496011  0.610520
02 0,671166  0,672289  0.388198  0.542480
0.3 0,554383  0,535553  0.291754 0460170
0.4 0450782  0,451899  0,203215  0.377236
0.5 0357489  0.358516° 0,120289  0,297443
0.6 0272293 0.273320  0.041324  0,221685
0.7 0,193899  0,194734
0.8 0.120793  0,121544




On making the substitution
¢ =g'lg (3.2

the homogeneous linear second-order equations (2.4) and (2.6) reduce to the nonlinear Riccati equation

¢ + ¢ + ap + b=0. 3.3)
Here g is the velocity if we take Eq. (2.4), or the pressure if we take Eq. (2.6); ¢ and b are the coefficients of
the first and zeroth derivatives in the corresponding equations. The boundary conditions for ¢ have the form

Flym—e =a{l — ML L /[ — iaPMH + ¢) — 2a®M21 -+ o2 Iy, (3.4)

Fly=teo = —o{l — ML — P [1 + iafM(1 — c) — %M1 — c)?] 212 (3.5)
Here the real part of the root is larger than zero.

Equation (3.3) was solved numerically by the Runge—Kutta method in two ways. In the first the boundary
conditions (3.4), (3.5) were transferred from infinity to the finite distances y;=—1 and y,=1.

For ¢ equal to some c, the integration of Eq. (3.3) began from y; with the initial condition (3.4), and the
value of ¢ obtained at the point y, was then compared with that from Eq. (3.5). A new value of ¢ was calculated
using the method of secants

Cr+1=Cp + {(cn - cn—l) (q)';’_(cn) - (Pn(cn))}"![q)n(cn) - (pn(cn—l)lv <3-6)

where @,(c,) is the boundary condition (3.5) calculated for ¢ =cp; ¢pley) and ¢plep-y) are the values of ¢ at
the point y, obtained from the solution of Eq. (3.3) for c=c, and c=c

n-1+
The process was continued until
mod (¢, ~— c,—y) = 8. (3.7

It can be seen from Eq. (3.6) that we must have two approximate values of ¢ to solve the problem. These
were taken from results previously obtained, To check the correctness of the calculations the quantity ¢ was
found independently from Egs. (2.4), (2.6) by the same method for various values of I. When solving, & was
taken equal to 1078 in Eq. (3.7), and the integration step was taken to be Ay =0,01,

Numerical integration showed that c,.=0 always. It was found that for [ =3
max |e; — ¢y} ~ 102,
for [ =6
max |¢; — ¢y ~ 10-3,

where c; is the imaginary part of c, found by solving Eq. (2.4), and ¢, is the imaginary part of ¢ found by
solving Eq. (2.6).

Only Eq. (2.6) was solved by the second method. The following substitution is made for the independent
variable: z=tanhyandfrom Egs, (2.6}, (3.2), and (3.3) we obtain for the profile (3.1)

(1 — 299" + ¢ —2(1 —2)/(z—c)lo—a2[1 — Mz — ¢)*/(1-+iapM(z —¢) — #a®M¥z — ¢)?) =0, (3.8)

where the prime denotes differentiation with respect to z. The boundary conditions for ¢ (3.4), (3.5) are taken
at the points z =1, z=-1,

It is clear from Egs. (3.4), (3.5), and (3.8) that the value of ¢' at these points is indeterminate. Develop-
ing this indeterminacy according to 1'Hédpital's rule, we have

o _ 2 oM (1 & ¢) (f — 0,51aBM2 (1 - ¢)) .
Pz=—1) _{(1 + @) [" Tt [T B ME (1 I ¢) — % ME (T +e)2]2]JZ=_;

Pl AN —1T 29 M2 (1 —¢) (1 - 0,5iafM? (1 —¢))
(=1 = {(1 -— Q) L S + 1 F 7aPME (1 —¢) — %o®MZ (1 — c)2]? ]} =

The process of searching for ¢ is similar to that described in the first method. The difference between
the values of ¢ obtained from Eq. (2.6) as solved by the first method with [ =6, and by the second method was
less than 10~%, and so we can have confidence in ¢ to five significant figures.

For M=0 and allowing for the discrepancy in the normalization of V, the values of ¢i coincide with the
results of [14], where the cj are given with an accuracy to four significant figures.
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The values of ¢; found for =%=0, M#0 are given in Fig. 1 and in Table 1 as functions of the wave num-
ber a.

Figure 2 shows how the quantity ¢; changes as a function of M? for a fixed value of @, Within the limits
of accuracy of the graph this function is linear for small M?, and so by using the values of ¢; obtained pre-
viously we were able to set the initial approximations for c; successfully for the other Mach numbers. It
is clear from this that for shear flow the compressibility turns out to have a stabilizing action on growing

perturbations, This agrees with already familiar results (see, for example, [8]).

Values of ¢ are given in Table 2 for fixed values of M, 8=0, and ##0, It is clear that the flow becomes
more stable as % increases.

Values of ¢ are given in Table 3 for §#0, »=0, In this case the instability is amplified.
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